
Static analysis of pattern-free properties
Horatiu Cirstea

Université de Lorraine – LORIA

Nancy, France

Horatiu.Cirstea@loria.fr

Pierre Lermusiaux

Université de Lorraine – LORIA

Nancy, France

Pierre.Lermusiaux@loria.fr

Pierre-Etienne Moreau

Université de Lorraine – LORIA

Nancy, France

Pierre-Etienne.Moreau@loria.fr

ABSTRACT

Rewriting is a widely established formalism with major applica-

tions in computer science. It is indeed a staple of many formal

verification applications as it is especially well suited to describe

program semantics and transformations. In particular, constructor

based term rewriting systems are generally used to illustrate the

behaviour of functional programs.

In the context of formal verification, it is often necessary to

characterize the shape of the reducts of such rewrite systems and,

in a typed context, the underlying type system provides syntactic

guarantees on the form of these terms by exhibiting, among others,

the constructor symbols that they can contain. On the other hand,

when performing (program) transformations we often want to

eliminate some symbols and, more generally, to ensure that some

patterns are absent from the result of the transformation.

We propose in this paper an approach to statically verify the ab-

sence of specified patterns from the reachable terms of constructor

based term rewriting systems. The proposed approach consists in

annotating the function symbols with a set of profiles outlining pre-

and post-conditions that must be verified by the rewrite relation,

and using a rewrite basedmethod to statically verify that the rewrite

system is indeed consistent with the respective annotations.

CCS CONCEPTS

• Theory of computation→ Logic and verification.

KEYWORDS

Rewriting, Pattern-matching, Pattern semantics, Static analysis

ACM Reference Format:

Horatiu Cirstea, Pierre Lermusiaux, and Pierre-Etienne Moreau. 2021. Static

analysis of pattern-free properties. In 23rd International Symposium on
Principles and Practice of Declarative Programming (PPDP 2021), September
6–8, 2021, Tallinn, Estonia. ACM, New York, NY, USA, 13 pages. https://doi.

org/10.1145/3479394.3479404

ACKNOWLEDGMENTS

This work is partially supported by the Agence Nationale de la

Recherche under project ANR-16-CE25-0007 FORMEDICIS (https:

//anr.fr/Projet-ANR-16-CE25-0007).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PPDP 2021, September 6–8, 2021, Tallinn, Estonia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8689-0/21/09. . . $15.00

https://doi.org/10.1145/3479394.3479404

1 INTRODUCTION

Rewriting is a robust formalism, which not only provides a use-

ful framework for formal verification but also a broad expressive

power and is thus especially well suited in the context of declara-

tive programming. In particular, these properties advocate it as a

comprehensive approach used to describe program semantics [26]

and program transformations [6, 22]. Languages implementing the

underlying notions of pattern matching and rewrite rules include

well known functional languages as well as rule based languages,

likeMaude [11], Stratego [31], or Tom [4].

Giving a characterization of the set of terms reachable through

a transformation is a problem that has been extensively studied for

its major implications in formal verification. For example, infinite-

state systems can be modeled using term rewriting systems or

tree transducers, and multiple approaches, ranging from model

checking ones [8, 21] to tree automata completion [14] can then be

used to verify, by reachability analysis, some forms of correctness

properties.

In the context of program transformation, a similar approach [9]

was introduced to verify the correctness of a transformation with

respect to the target language and, more precisely, to guarantee

that specific constructor symbols, or patterns, are absent from the

programs obtained by transformation. This approach relies on a

system of annotations of the function symbols by the patterns to

be eliminated.

For instance, let us consider lists of expressions build out of

(wrapped) integers and lists:

Expr = int(Int) | lst(List)
List = nil | cons(Expr ,List)

and a transformation which flattens list expressions implemented

by the functions flatten :List 7→List and concat :List∗List 7→List
defined using the rewriting systemℛ:

flatten(nil) _ nil
flatten(cons(int(n), l)) _ cons(int(n),flatten(l))
flatten(cons(lst(l), l ′)) _ flatten(concat(l , l ′))
concat(cons(e, l), l ′) _ cons(e, concat(l , l ′))
concat(nil, l) _ l

To statically ensure that the result of the transformation contains

no nested lists we could of course introduce new types List ′ and
Expr ′ describing such lists and change accordingly the types of

the functions. This is quite intrusive and particularly tedious when

the differences between the source and the target languages only

concern a few symbols but induce nevertheless significant type

extensions.

The approach proposed in [9] allows the verification of the prop-

erty by simply annotating the function symbol flatten with the

corresponding (anti-)pattern p := cons(lst(l1), l2) and checking that

https://doi.org/10.1145/3479394.3479404
https://doi.org/10.1145/3479394.3479404
https://anr.fr/Projet-ANR-16-CE25-0007
https://anr.fr/Projet-ANR-16-CE25-0007
https://doi.org/10.1145/3479394.3479404

PPDP 2021, September 6–8, 2021, Tallinn, Estonia H.Cirstea, P.LERMUSIAUX and P.-E.Moreau

the rewriting system is consistent with the annotation, and thus,

that the normal forms are flat lists. The method relies on an over-

approximation of the potential results obtained by reduction and

thus, it may lead to some false negatives. For example, the system

ℛ′
obtained fromℛ by replacing the third rule with

flatten(cons(lst(l), l ′)) _ concat(flatten(l),flatten(l ′))

while still producing only flat lists, could not be verified with this

method.

We propose in this paper a more elaborate annotation system

which declares for each function not only a single (anti-)pattern

specifying the post-conditions on the expected outcome but also the

pre-conditions guaranteeing the form of the results. This allows for

a substantially more precise description of the expected behaviour

of the reduction associated to each function symbol, with the aim

of reducing significantly the presence of false negatives. For each

function we have one or several profiles and, for example, the

concat function in the rewriting system ℛ′
can be annotated by

the profile p∗p 7→p to indicate that the concatenation of two flat

lists is a flat list. The new approach relies on an inference method

to characterize the substitutions consistent with the pre-conditions

and a verification method guaranteeing that the application of these

substitutions is consistent with the post-condition. The method

applies to Constructor Based Term Rewriting Systems (CBTRS),

which are a common formal representation of functional programs

relying on pattern matching.

Contributions. We thus provide a method to verify that, given a

set of functions whose behaviours are described by a given CBTRS,

and a set of annotations for the corresponding function symbols,

the normal forms potentially obtained by rewriting are consis-

tent with the annotations. More precisely, given a function sym-

bol f annotated with a profile p1∗ . . . ∗pn 7→ p, we can verify

that for any values v1, . . . ,vn containing no subterm matched by

p1, . . . ,pn respectively, the values potentially obtained by reducing

the term f (v1, . . . ,vn) with the CBTRS defining f contain no sub-

term matched by p. Note that, while this result is ultimately reliant

on the termination of the considered CBTRS, the proposed method

is based on a notion of semantics preservation that does not rely on

the termination or confluence of the CBTRS when this is linear. For

non right-linear CBTRSs, we propose an adjustment of the method

that assumes a strict reduction strategy and applies effectively only

for confluent CBTRSs.

First, we introduce basic notions and notations for term rewriting

and pattern-matching. We revisit in Section 3 the notions of pattern-

freeness and term semantics needed for our extended profiles. In

Section 4 we describe the inference and checking methods and

in Section 5 we explain how the overall method adapts to some

cases of non-linearity. We finally present some related work and

conclude.

2 GENERAL NOTIONS AND NOTATIONS

We present in this section the basic notions and notations used in

this paper. More details on term rewriting systems can be found

in [3, 28]. The extended patterns related notions introduced in [9,

10] are adapted here to cope with non-linear patterns.

2.1 Constructor Based Term Rewriting System

A many-sorted signature Σ = (𝒮,ℱ), consists of a set of sorts 𝒮
and a set of symbols ℱ . We distinguish constructor symbols from

function symbols by partitioning the alphabet ℱ into 𝒟, the set

of defined symbols, and 𝒞 the set of constructors: ℱ = 𝒟 ⊎ 𝒞. A
symbol f with domain s1∗ · · · ∗sn ∈ 𝒮∗

and co-domain s ∈ 𝒮 is

written f : s1∗ · · · ∗sn 7→ s; we may write fs to indicate explicitly

the co-domain. We denote by 𝒞s , resp. 𝒟s , the set of constructors,

resp. defined symbols, with co-domain s . Variables are also sorted

and we write xs to indicate that the variable x has sort s . The set
𝒳s denotes a set of variables of sort s and 𝒳 =

⋃
s ∈𝒮 𝒳s is the set

of sorted variables. In what follows, we explicitly indicate the sort

for a variable, or for a set, only if it cannot be implicitly inferred or

if we want to emphasize this information.

The set of terms of sort s ∈ 𝒮 , denoted 𝒯s (ℱ ,𝒳) is the small-

est set containing 𝒳s and such that f (t1, . . . , tn) is in 𝒯s (ℱ ,𝒳)

whenever f : s1∗ · · · ∗sn 7→ s and ti ∈ 𝒯si (ℱ ,𝒳) for i ∈ [1,n]. We

write t : s to explicitly indicate that the term t is of sort s , i.e. when
t ∈ 𝒯s (ℱ ,𝒳). The set of sorted terms is defined as 𝒯 (ℱ ,𝒳) =⋃
s ∈𝒮 𝒯s (ℱ ,𝒳). The set of variables occurring in t ∈ 𝒯 (ℱ ,𝒳) is

denoted by 𝒱ar (t). If 𝒱ar (t) is empty, t is called a ground term.

𝒯s (ℱ) denotes the set of all ground first-order terms of sort s and
𝒯 (ℱ) denotes the set of all ground first-order terms, while mem-

bers of 𝒯 (𝒞) are called values. A linear term is a term where every

variable occurs at most once. The terms in 𝒯 (𝒞,𝒳) are called con-
structor patterns.

A position of a term t is a finite sequence of positive integers
describing the path from the root of t to the root of the subterm at

that position. The empty sequence representing the root position is

denoted by ε . t |ω denotes the subterm of t at position ω, and t [r]ω
the term t with the subterm at position ω replaced by r . We note

𝒫os(t) the set of positions of t .
We call substitution any mapping from 𝒳 to 𝒯 (ℱ ,𝒳) which is

the identity except over a finite set of variables 𝒟om(σ) called its

domain. A substitution σ extends as expected to an endomorphism

of 𝒯 (ℱ ,𝒳). We call value substitution any substitution σ mapping

variables to values, i.e. such that σ (x) ∈ 𝒯 (𝒞) for any x ∈ 𝒟om(σ).
Sorted substitutions are such that if x : s then σ (x) : s . Note that for
any such sorted substitution σ , t : s iff σ (t) : s . In what follows we

will only consider such sorted substitutions.

A constructor rewrite rule (over Σ) is a pair of terms (φ(ls1, . . . , lsn),
rs) ∈ 𝒯s (ℱ ,𝒳) × 𝒯s (ℱ ,𝒳) (usually denoted φ(ls1, . . . , lsn) _ rs)
with s ∈ 𝒮 , φ ∈ 𝒟, ls1, . . . , lsn ∈ 𝒯 (𝒞,𝒳) and such that ls :=

φ(ls1, . . . , lsn) is linear and 𝒱ar (rs) ⊆ 𝒱ar (ls). A constructor based
term rewriting system (CBTRS) is a set of constructor rewrite rules

ℛ inducing a rewrite relation over 𝒯 (ℱ), denoted by =⇒ℛ and

such that t =⇒ℛ t ′ iff there exists ls _ rs ∈ ℛ, ω ∈ 𝒫os(t) and
a substitution σ such that t |ω = σ (ls) and t ′ = t [σ (rs)]ω . We note

−→R the rewrite relation induced byℛwith a strict reduction strat-

egy, i.e. such that t −→ℛ t ′ iff there exists ls _ rs ∈ ℛ, ω ∈ 𝒫os(t)
and a value substitution σ such that t |ω = σ (ls) and t ′ = t [σ (rs)]ω .
=⇒∗

ℛ, resp. −→∗
ℛ, denotes the reflexive and transitive closure of

=⇒ℛ, resp. −→ℛ.

Static analysis of pattern-free properties PPDP 2021, September 6–8, 2021, Tallinn, Estonia

2.2 Extended Patterns and Ground Semantics

Starting from constructor patterns, we adapt the notion of extended
pattern first introduced in [10]:

Definition 2.1 (Extended patterns). Given a set of variables
𝒳 and a signature Σ = (𝒮,𝒟 ⊎ 𝒞) the set 𝒫(𝒞,𝒳) of extended

patterns is defined as follows:

p,q := x | c(q1, . . . ,qn) | p1 + p2 | p1 \ p2 | p1 × p2 | ⊥

with x ∈ 𝒳 ,p,p1,p2 : s for some s ∈ 𝒮, c : s1∗ · · · ∗sn 7→ s ∈ 𝒞 and
∀i ∈ [1,n],qi : si . We assume +, \,×,⊥ < 𝒟 ⊎ 𝒞. The set of variables
occurring in an extended pattern p is denoted 𝒱ar (p).

An extended pattern p ∈ 𝒫(𝒞,𝒳) matches a value v ∈ 𝒯 (𝒞),
denoted p ≺≺ v , iff there exists a substitution σ such that p

σ
≺≺ v with:

x
σ
≺≺ v iff v = σ (x)

c(p1, . . . ,pn)
σ
≺≺ c(v1, . . . ,vn) iff ∧ni=1 pi

σ
≺≺ vi , for c ∈ 𝒞

p1 + p2
σ
≺≺ v iff p1

σ
≺≺ v ∨ p2

σ
≺≺ v

p1 \ p2
σ
≺≺ v iff p1

σ
≺≺ v ∧ p2 ≺⊀ v

p1 × p2
σ
≺≺ v iff p1

σ
≺≺ v ∧ p2

σ
≺≺ v

Note that ⊥ ≺⊀ v for any v .

A pattern p1 + p2 matches any term matched by one of its com-

ponents while a pattern p1 ×p2 matches any term matched by both

its components. The relative complement of p2 w.r.t. p1, p1 \ p2,
matches all terms matched by p1 but those matched by p2.

The relation holds not only for patterns against values but also

for general terms containing no complement patterns; it is not sta-

ble by reduction in presence of complements and a more elaborate

definition should be considered to tackle the problem. The notions

used in what follows only involve matchings of extended patterns

against values but the underlying matching of the constructor pat-

terns in CBTRS reductions is done against general terms.

The ground semantics of an extended pattern is the set of values

matching the pattern [10] and thus, the ground semantics of a

constructor pattern is the set of all its value instances:

JpK = {v ∈ 𝒯 (𝒞) | p ≺≺ v}

Given an extended pattern p, some of its variables are not sig-

nificant for the matching, i.e. for all v ∈ JpK, they are not in the

domain of σ in the relation p
σ
≺≺ v introduced in Definition 2.1.

The setℳ𝒱(p) of matchable variables of a pattern p is defined

as follows:

ℳ𝒱(x) = {x}, for all x ∈ 𝒳
ℳ𝒱(c(p1, . . . ,pn)) = ℳ𝒱(p1) ∪ · · · ∪ℳ𝒱(pn), for all c ∈ 𝒞

ℳ𝒱(p1 + p2) = ℳ𝒱(p1) ∪ℳ𝒱(p2)
ℳ𝒱(p1 × p2) = ℳ𝒱(p1) ∪ℳ𝒱(p2)
ℳ𝒱(p1 \ p2) = ℳ𝒱(p1)

ℳ𝒱(⊥) = ∅

The variables of p which are not matchable are free: ℱ𝒱(p) =
𝒱ar (p) \ℳ𝒱(p). In what follows we consider that matchable and

free variables have different names.

A pattern c(p1, . . . ,pn) is linear if each pi , i ∈ [1,n], is linear
and ∀1 ≤ i < j ≤ n, ℳ𝒱(pi) ∩ℳ𝒱(pj) = ∅. The pattern p1 + p2,
resp. p1 \p2, is linear if each of p1 and p2 is linear. This corresponds
to the fact that p1 and p2 represent independent alternatives and
thus, that their variables are unrelated w.r.t. pattern semantics. For

example, the terms h(x) + д(x) and h(x) + д(y) both represent all

terms rooted by h or д. The pattern p1 × p2 is linear if each of p1
and p2 is linear andℳ𝒱(p1) ∩ℳ𝒱(p2) = ∅. This corresponds to

the fact that p1 and p2 should be matched simultaneously against

the corresponding value.

In this paper we consider that all conjunctions p1 × p2 are such
thatℳ𝒱(p1) ∩ℳ𝒱(p2) = ∅ and, in this case, for any patterns p,q
we have Jp × qK = JpK ∩ JqK. This property is crucial for checking

pattern-freeness with our approach.

If a pattern contains no ⊥ (except at the root position), no × and

no \ it is called additive.

3 ANNOTATED TERMS AND SEMANTICS

PRESERVING CBTRS

The approach proposed in [9] used defined symbol annotations to

indicate the absence of the specified patterns from the reducts of a

term headed by the respective symbols. There was nevertheless no

indication on the shape of the arguments of these defined symbols

and this lack of precision could lead to some false negatives. We

consider here a more elaborate profile for the defined symbols to

perform a finer grained analysis of the potential normal forms.

Although no restriction is imposed on the analysed CBTRS, the

method described in what follows is really interesting when the

system is at least weakly normalizing in which case we guarantee

the absence of specified patterns from the normal forms.

3.1 Pattern-free Terms and their Semantics

Every defined symbol with a sort profile f : s1∗ · · · ∗sn 7→ s ∈ 𝒟
is associated with one or several pattern profiles p1∗ · · · ∗pn 7→p,
withp1, . . . ,pn ,p linear additive patterns. Intuitively, such a pattern
profile indicates that the normal form of a ground term of the form

f (t1, . . . , tn), when it exists, is a p-free value if the terms t1, . . . , tn
can be reduced only to values that are respectively p1-, . . . ,pn -free.
We consider that every defined symbol f !𝒫 is annotated with the

set 𝒫 of its profiles; when 𝒫 is empty the annotation is omitted.

Given the example from the introduction, we could consider for

the symbol concat the profile p∗p 7→p, with p := cons(lst(l1), l2), to
indicate that the concatenation of two flat lists is a flat list. We could

also use a second profile q∗q 7→q, with q := cons(e, l), to indicate

that the concatenation of two empty lists is an empty list.

We consider terms whose instances and reducts can’t be matched

by a specified pattern:

Definition 3.1 (Pattern-free terms). Given an additive pat-
tern p,

• a value v ∈ 𝒯 (𝒞) is p-free iff ∀ω ∈ 𝒫os(v),p ≺⊀ v |ω ;
• a patternu ∈ 𝒯 (𝒞,𝒳) \𝒯 (𝒞) is p-free iff ∀σ s.t. σ (u) ∈ 𝒯 (𝒞),
σ (u) is p-free;

• a term t ∈ 𝒯 (ℱ ,𝒳) \ 𝒯 (𝒞,𝒳) is p-free iff ∀ω ∈ 𝒫os(t)
s.t. t |ω = f !𝒫s (t1, . . . , tn) with f !𝒫s ∈ 𝒟s , the term t [v]ω is
p-free for all q-free value v ∈ 𝒯s (𝒞) where q =

∑
q′∈𝒬 q′,

𝒬 = {r | ∃r1∗ · · · ∗rn 7→ r ∈ 𝒫 s.t. ∀i ∈ [1,n], ti is ri -free}.

A value is p-free if and only if p matches no subterm of the value.

For constructor patterns, verifying a pattern-free property comes

to verifying the property for all the ground instances of the term.

Finally, a general term is p-free if and only if for all subterms u

PPDP 2021, September 6–8, 2021, Tallinn, Estonia H.Cirstea, P.LERMUSIAUX and P.-E.Moreau

headed by a defined symbol f ∈ 𝒟s replacing all instances of u
in t by any q-free value of sort s , with q a pattern built by taking

into account profiles consistent with u, results in a p-free term.

Intuitively, this corresponds to considering an over-approximation

of the set of potential normal forms of that subterm, and therefore

of the whole term.

Note that 𝒬 could be empty (for example, when 𝒫 is empty) in

which case q = ⊥ and in this case v can be any value. We can also

remark that all terms are ⊥-free.

Example 3.1. We consider the signature Σ = (𝒮,ℱ) with 𝒮 =
{Expr ,List} and ℱ = 𝒞 ⊎𝒟, where 𝒞 = {int : Int 7→Expr , lst :List
7→Expr , nil :List , cons :Expr∗List 7→List}, and 𝒟 = {flatten!𝒫1

:

List 7→List , concat!𝒫2
:List∗List 7→List}.

When we take 𝒫1 = {⊥ 7→p1}, with p1 := cons(lst(l1), l2), and
𝒫2 = ∅, the term flatten(l) is p1-free since q = p1 in Definition 3.1.
On the other hand, the term concat(l , l ′) is not p1-free since q =
⊥ and there obviously exists a ⊥-free value which is not p1-free.
Similarly, neither concat(nil, nil) nor concat(flatten(l),flatten(l ′)) is
p1-free. If we change the annotation of concat to 𝒫2 = {p1∗p1 7→p1,
p2∗p2 7→p2}, with p1 as before and p2 := cons(e, l), we have:

• concat(l , l ′) is neither p1-free nor p2-free;
• concat(flatten(l),flatten(l ′)) is p1-free (since q = p1 in Defini-
tion 3.1), but not p2-free;

• concat(nil, nil) is p1-free and p2-free, i.e. (p1 + p2)-free, (since
q = p1 + p2 in Definition 3.1).

The pattern-free properties in the above example have been

checked by verifying manually the (pattern matching) conditions

required by the pattern-free definition. We propose in Section 4.3 a

method relying on the notion of ground semantics to verify auto-

matically pattern-free properties. For this, we should first extend

the notion of ground semantics to take into account all terms in

𝒯 (ℱ ,𝒳):

Definition 3.2 (Generalized ground semantics). Let p ∈

𝒯 (𝒞,𝒳) and t ∈ 𝒯 (ℱ ,𝒳),

• JpK = {v ∈ 𝒯 (𝒞) | p ≺≺ v} = {σ (p) | σ (p) ∈ 𝒯 (𝒞)};
• JtK =

⋃
ω
⋃
v Jt [v]ω K with ω ∈ 𝒫os(t) such that t |ω =

f !𝒫s (t1, . . . , tn), f
!𝒫
s ∈ 𝒟s , and v ∈ 𝒯s (𝒞) q-free, where

q =
∑
q′∈𝒬 q′, 𝒬 = {r | ∃r1∗ · · · ∗rn 7→ r ∈ 𝒫 s.t. ∀i ∈

[1,n], ti is ri -free}.

For constructor patterns, the definition of ground semantics is

unchanged. The ground semantics of a term containing defined

symbols represents the union of the ground semantics of the terms

obtained by over-approximating all the possible reductions of the

subterms headed by such defined symbols as indicated by the anno-

tation of the respective symbols. The over-approximation is identi-

cal to the one considered in the pattern-free property, and directly

related to the chosen annotations. As such, the more precise the

profiles describe the behaviour of the reduction of a defined symbol,

the more precise the approximation is.

A term is p-free if all the values in its semantics are p-free:

Proposition 3.1 (Pattern-free vsGround Semantics). Given
t ∈ 𝒯 (ℱ ,𝒳) and p an additive pattern, t is p-free iff ∀v ∈ JtK,v is
p-free.

The notion of ground semantics can be extended to the more gen-

eral notion of deep semanticswhich is closed by the subterm relation:

{[t]} = {u |ω | u ∈ JtK,ω ∈ 𝒫os(u)}. Note that this notion introduces

no additional over-approximation, all over-approximations being

situated at the level of ground semantics. Then, checking that t is
p-free simply consists in checking that the intersection between

the deep semantics of t and the ground semantics of p is empty:

Proposition 3.2 (Pattern-free vs Deep Semantics). Given
t ∈ 𝒯 (ℱ ,𝒳) and p an additive pattern, t is p-free iff {[t]} ∩ JpK = ∅.

We will see in Section 4.3 how the above intersection can be

computed and we first look at how pattern-freeness interacts with

term rewriting.

3.2 Semantics preserving CBTRS

Generalized ground semantics rely on the symbol annotations and

assume thus a specific shape for the potential normal forms of

reducible terms. This assumption should be checked by verifying

that the CBTRSs defining the annotated symbols are consistent

with these annotations, i.e. check that the semantics is preserved

by reduction.

Definition 3.3 (Semantics preservation). We say that a
rewrite rule ls _ rs is semantics preserving iff, for all substitu-
tion σ , we have Jσ (rs)K ⊆ Jσ (ls)K. We say that a rewrite rule ls _ rs
is strictly semantics preserving iff, for all value substitution σ , we
have Jσ (rs)K ⊆ Jσ (ls)K.

A CBTRS is (strictly) semantics preserving iff all its rewrite rules
are.

Semantics preservation carries over to the induced rewrite rela-

tion:

Proposition 3.3. Given a semantics preserving CBTRS ℛ, we
have

∀t ,v ∈ 𝒯 (ℱ), if t =⇒∗
ℛ v, then JvK ⊆ JtK.

Together with Proposition 3.1 this guarantees that the rewrite re-

lation induced by a semantics preserving CBTRS preserves pattern-

free properties. Thus, the semantics preservation allows the charac-

terization of the potential normal forms for a semantics preserving

CBTRS and in what follows we give sufficient conditions guaran-

teeing this latter property and provide a method for automatically

checking these conditions.

Definition 3.4 (Profile satisfaction). Given a constructor
rewrite rule f (ls1, . . . , lsn) _ rs and a profile π = p1∗ · · · ∗pn 7→p, we
say that the rule satisfies, respectively strictly satisfies, the profile π iff,
for all substitution, respectively value substitution, σ with 𝒟om(σ) =
𝒱ar (f (ls1, . . . , lsn)),

σ (lsi) is pi -free for all i ∈ [1,n] =⇒ σ (rs) is p-free

Profile satisfaction is a necessary and sufficient condition for

semantics preservation:

Proposition 3.4 (Semantics preservation). A constructor
rewrite rule f !𝒫 (ls1, . . . , lsn) _ rs is semantics preserving, respec-
tively strictly semantics preserving, if and only if it satisfies, respec-
tively strictly satisfies, all profiles of 𝒫 .

Static analysis of pattern-free properties PPDP 2021, September 6–8, 2021, Tallinn, Estonia

A rewrite rule is thus semantics preserving if whenever the

specified profiles are verified by the left-hand side they are also

verified by the right-hand side. To perform this verification we first

infer the shapes of the terms that could be used to instantiate the

variables in the left-hand side such that a given profile of the head

symbol is verified and then, check that when replacing accordingly

the variables in the right-hand side we respect the profile.

Example 3.2. We consider the signature from Example 3.1 and
examine the rewrite rule concat(cons(e, l), l ′) _ cons(e, concat(l , l ′))
from the CBTRS presented in the introduction.

Given the substitution σ1 = {e 7→ int(5), l 7→ nil, l ′ 7→ nil} we
can easily see that σ1(cons(e, l)) = cons(int(5), nil) and σ1(l ′) = nil
are p1-free and thus, we should check that σ1(cons(e, concat(l , l ′))) =
cons(int(5), concat(nil, nil)) is p1-free. As we have seen in Exam-
ple 3.1, concat(nil, nil) is p1-free and, since we have cons(lst(l1), l2)≺⊀
cons(int(5),v) for all valuev ,σ1(cons(e, concat(l , l ′))) = cons(int(5),
concat(nil, nil)) is also p1-free (Definition 3.1).

For the substitution σ2 = {e 7→ lst(cons(int(5), nil)), l 7→ nil,
l ′ 7→ nil}, while σ2(l

′) = nil is clearly p1-free, σ2(cons(e, l)) =
cons(lst(cons(int(5), nil)), nil) is not, and thus there is no need to
check that σ2(cons(e, concat(l , l ′))) is p1-free when verifying the pro-
file satisfaction of the rule.

4 VERIFYING SEMANTICS PRESERVATION

The first step towards the verification of the profile satisfaction

of a rule f !𝒫 (ls1, . . . , lsn) _ rs consists in characterizing, for each

profile p1∗ . . . ∗pn 7→p ∈ 𝒫 , the substitutions σ such that σ (lsi) is
pi -free or equivalently, inferring the pattern-freeness constraints
on the shape of the values that could be substituted for the variables

of lsi so that all the corresponding instances of lsi are pi -free. These
constraints are naturally expressed in terms of extended patterns

using annotated variables and an aliasing mechanism.

4.1 Annotated and alias variables

We consider a set 𝒳 a
of variables annotated by linear additive

patterns, and extend the matching relation to such variables:

x−p
σ
≺≺ v iff v = σ (x−p) and v is p-free

Note that the ground semantics of a plain variable xs is the set of
all possible values of a given sort: Jxs K = 𝒯s (𝒞), while the ground
semantics of an annotated variable x

−p
s is the set of all possible

p-free values Jx−ps K = {v ∈ 𝒯s (𝒞) | v p-free}. Since x−⊥s has the

same semantics as xs we use indistinguishably xs and x
−⊥
s .

Extended patterns involve now annotated variables and patterns

aliased by variables:

p,q := x | c(q1, . . . ,qn) | p1 + p2 | p1 \ p2 | p1 × p2 | ⊥ | y @ p

with x ∈ 𝒳 a
s ,y ∈ 𝒳s ,p,p1,p2 : s for some s ∈ 𝒮,∀i ∈ [1,n],qi : si

and c : s1∗ · · · ∗sn 7→ s ∈ 𝒞. @ has a higher priority than \ which

has a higher priority than + and ×.

Pattern matching and matchable variables for aliased patterns

are defined as for conjunctions: x @ p
σ
≺≺ v iff x × p

σ
≺≺ v , and

ℳ𝒱(x @ p) = {x} ∪ ℳ𝒱(p). In what follows we consider only

aliased patterns x@p such that x <ℳ𝒱(p) = ∅, for which Jx@pK =
JpK.

We consider from now on extended patterns in 𝒫(𝒞,𝒳 a) and

substitutions which map variables from 𝒳 to 𝒫(𝒞,𝒳 a). We call

symbolic the patterns in 𝒯 (𝒞,𝒳 a) and regular patterns that contain
only variables of the form x−⊥. We call quasi-additive patterns that
contain no × and only contain \ with the pattern on the left being a

variable and the pattern on the right being a regular additive pattern.

And we call quasi-symbolic a quasi-additive pattern that contains

no ⊥ and only contains + in the additive pattern on the right of a

\. Additive patterns are defined as before and thus, they contain

no aliases. The annotation of an alias variable is always ⊥ and, for

readability purposes, it is omitted in what follows. Finally, given a

quasi-symbolic pattern t , we consider the set of its aliased variables
𝒜t𝒱ar (t) = {x ∈ 𝒱ar (t) | ∃ω ∈ 𝒫os(t),u ∈ 𝒫(𝒞,𝒳 a) . t |ω =
x @ u} and for any x ∈ 𝒜t𝒱ar (t) we note t@x =

∏
q∈Q@x q with

Q@x = {q | ∃ω ∈ 𝒫os(t), t |ω = x @ q}.
For example, the pattern cons(e @ (x \ lst(l1)) + lst(nil), l @

y) is quasi-additive but not quasi-symbolic, while t = cons(e @
(x \ (lst(l1) + int(0))), l @ y) and u = cons(lst(l @ cons(int(n), l1)),
l @ cons(e, nil)) are quasi-symbolic. Moreover, we have t@e = x \

(lst(l1) + int(0)) and u@l = cons(int(n), l1) × cons(e, nil).
We assume a set 𝒰 = {·1, . . . , ·n } of suitable symbols forn-tuples

(the cardinality of 𝒰 is the maximum arity of the symbols in 𝒟),

and for simplicity an n-tuple ·n (p1, . . . ,pn) is denoted Lp1, . . . ,pnM.
Tuple symbols behave as constructor symbols w.r.t. all definitions.

Definition 4.1 (Aliased versions). A term τ is an aliased

version of a term t ∈ 𝒯 (ℱ ,𝒳) iff for all ω ∈ 𝒫os(t) s.t. t |ω = x ∈

𝒱ar (t) we have τ |ω = x @ q for some quasi-symbolic pattern q with
ℳ𝒱(q) ∩ 𝒱ar (t) = ∅, and for all distinct variables x ,y ∈ 𝒱ar (t) we
have ℳ𝒱(τ@x) ∩ℳ𝒱(τ@y) = ∅.

σ@τ
t denotes the substitution corresponding to the mapping {x 7→

x @ τ@x | x ∈ 𝒱ar (t)}.

For example, cons(e @ (x \ lst(l1)), l @ y) is an aliased version

of cons(e, l), constraining the variables e , and l , to terms matching

x \ lst(l2) (i.e. not lists), and y (i.e. any term), respectively.

4.2 Inferring the shape of variables

To characterize substitutions σ such that σ (lsi) is pi -free we note
that, according to Proposition 3.1 and to the definition of anno-

tated variables, σ (lsi) is pi -free iff Jσ (lsi)K ⊆ Jx−pisi K. Since, lsi is a
constructor pattern whose semantics is the set of all its instances,

Jσ (lsi)K ⊆ Jlsi K. Thus, σ (lsi) is pi -free iff Jσ (lsi)K ⊆ Jlsi K ∩ Jx−pisi K =
Jlsi × x

−pi
si K (with x

−pi
si a fresh variable).

We express each extended pattern lsi × x
−pi
si in terms of a sum

of aliased versions of lsi , Jlsi × x
−pi
si K = Jλ1i + λ

2

i + · · · + λ
m
i K (with

m and λki ,k ∈ [1 . . .m] depending, as we will see below, on lsi and

x
−pi
si), such that for all σ with σ (lsi) pi -free, Jσ (lsi)K ⊆ Jλki K for

some k ∈ [1 . . .m]. The substitution can then be characterized by

specifying the constraints on the pattern’s variables:

Lemma 4.1. Given λ, an aliased version of a constructor pattern l ,
we have: ∀σ (Jσ (l)K ⊆ JλK ⇐⇒ ∀x ∈ 𝒱ar (l), Jσ (x)K ⊆ Jλ@x K)

Once the above aliased versions λ1i , λ
2

i , . . . , λ
m
i are identified we

know that for any substitution σ such that Jσ (lsi)K ⊆ Jx−pisi K there

exists a substitution σ
@λki
lsi

such that Jσ (lsi)K ⊆ Jσ@λki
lsi

(lsi)K. Thus,

PPDP 2021, September 6–8, 2021, Tallinn, Estonia H.Cirstea, P.LERMUSIAUX and P.-E.Moreau

in order to check profile satisfaction for the corresponding rewrite

rule, we can verify that {[σ@λki
lsi

(rs)]} ∩ JpK = ∅ for all k ∈ [1,m].

Example 4.1. We consider the signature and the patterns p1,p2
in Example 3.1 together with the CBTRS ℛ′ presented in the in-
troduction. In order to check that the rule concat(cons(e, l), l ′) _
cons(e, concat(l , l ′)) satisfies the profile p1∗p1 7→p1 we should char-
acterize the substitutions σ such that σ (cons(e, l)) and σ (l ′) are both
p1-free.

For each such substitution we should thus have Jσ (cons(e, l))K ⊆

Jcons(e, l)×x−p1List K. One can check that we have Jcons(e, l)×x−p1List K =
Jcons(e @ (x

−p1
Expr \ lst(l1)), l @ y

−p1
List)K (we present in the next sub-

section a method to compute the latter pattern) and we consider the
aliased version of cons(e, l), cons(e@ (x

−p1
Expr \ lst(l1)), l@y

−p1
List). Ac-

cording to Lemma 4.1, σ should be such that Jσ (e)K ⊆ Jx−p1Expr \lst(l1)K

and Jσ (l)K ⊆ Jy−p1List K. Similarly, we have Jl ′ × z
−p1
List K = Jl ′ @ z

−p1
List K.

Therefore, to satisfy this profile we should show that for all σ such
that Jσ (e)K ⊆ Jx−p1Expr \ lst(l1)K, Jσ (l)K ⊆ Jy−p1List K and Jσ (l ′)K ⊆

Jz−p1List K, σ (cons(e, concat(l , l
′))) isp1-free, i.e. that {[cons(e@(x

−p1
Expr \

lst(l1)), concat(l @ y
−p1
List , l

′
@ z

−p1
List))]} ∩ Jp1K = ∅.

When verifying the profile p2∗p2 7→p2, we can easily check that
Jcons(e, l) × x

−p2
List K = ∅, i.e. that a list cannot be p2-free and match

cons(e, l), and since there is no substitution which can lead to a p2-free
instance of the pattern in the left-hand side, the profile is satisfied.

We introduce the rewrite system R in Figure 1 in order to reduce

pattern conjunctions and, in particular, to reduce patterns of the

form q × x
−p
s , with p a linear regular additive pattern and q a

constructor pattern, to either ⊥ or a sum of aliased versions of

q. The rules generally correspond to their counterparts from set

theory where constructor patterns correspond to cartesian products

and the other extended patterns to the obvious set operations.

The rules A1 and A2, resp. E2 and E3, describe the behaviour

of the disjunction, resp. the conjunction, w.r.t. ⊥. Rule E1 indicates
that the semantics of a pattern containing a subterm with an empty

ground semantics is itself empty. Rule S1 corresponds to the dis-

tributivity of cartesian products over disjunction, while rules S2

and S3 express the distributivity of conjunction over disjunction.

Finally, rule S4 corresponds to the associativity of the disjunction.

The semantics of a variable of a given sort is the set of all ground

constructor patterns of the respective sort. Thus, the difference

between the ground semantics of any pattern and the ground se-

mantics of a variable of the same sort is the empty set (rule M1).

The rules M2–M6 correspond to set theory laws for complements.

M7 corresponds to the set difference of cartesian products; the

case when the head symbol is a constant c corresponds to the rule

c \c ⇒ ⊥. M8 corresponds to the special case where complemented

sets are disjoint.

Rules T1 and T2 just indicate that the intersection with the set of

all values (of a sort) as well as the intersection between two identical

sets have no effect; we nevertheless use the alias to keep track of the

original variable and identify the pattern-freeness constraints on

the respective variable (see Proposition 4.3). Rule T3 corresponds

to distribution laws for the joint intersection, while T4 corresponds

to the disjointed case.

The rules L1 and L2 specify respectively that aliasing a ⊥ is

useless and that aliasing a sum comes to aliasing all its patterns.

Rule L3 indicates that taking the complement of an alias variable

is nothing else than performing the operation on the aliased term

and changing thus accordingly the constraints on the respective

variable. Similarly, rules L4 and L5 propagate the alias in the case

of conjunctions.

The rules P1 and P2 follow from the observation that the ground

semantics of an annotated variable can be also defined as Jx−ps K =⋃
α ∈𝒞s Jα(x

−p
s1 , . . . ,x

−p
si) \ pK and that the only relevant element in

this set for the conjunction between x
−p
s and a pattern c(v1, . . . ,vn)

is c(x
−p
s1 , . . . ,x

−p
si) (see rules T3 and T4). Moreover, for any symbolic

patterns q1,q2 and regular additive pattern p we have J(q1 \ p) ×
q2K = J(q1 ×q2) \pK leading to the right-hand side of the rule. Note
that zi

−p
si are fresh variables generated automatically and that we

keep track of the original variables as in rule T1.

Rules P3, P4 and P5 correspond to the obvious set operation laws

but restrict to the only possible cases in the reduction. Finally, we

can observe that, thanks to the algorithm introduced in [9], we can

determine if {[x−ps \q]} = ∅ for any regular additive patterns p and q.
Therefore, the system is finalized by the rule P7 which eliminates,

when possible, annotated variables. Note that, in order to apply P7

exhaustively, R also needs a rule to perform some \-factorization

around variables, resulting in the rule P6.

Note that Figure 1 defines rule schemas and that the actual

rewrite system depends on the signature of the analysed CBTRS:

the rule schemas involving symbols expand to the rules obtained

by instantiating α , β,δ with all the symbols in 𝒞 and T2 expands to

two rules corresponding to the two cases. The conditions in rules

P3–P7 are evaluated independently of this rewrite system using the

method in [9].

It is relatively easy to see that if p =⇒∗
R
q and p is linear, resp.

regular, resp. quasi-additive then, q is linear (all variable duplica-

tions occur below different elements of a sum), resp. regular (all new

annotated variables are introduced because of a pre-existing anno-

tated variable), resp. quasi-additive (no products introduced and

all generated complements have right-hand sides already present

in the initial term). All the conjunctions p × q, resp. complements

p \ q, that we have to reduce for the scope of this paper are such

that q is linear, and this property is also preserved by R. Finally, R

also preserves the ground semantics:

Proposition 4.2 (Semantics preservation). For any extended
patterns p,q, if p =⇒∗

R
q then JpK = JqK.

R is confluent and terminating, and the normal forms allow the

characterization of the substitutions in the inference process:

Proposition 4.3. The rewrite system R is confluent and ter-
minating. Given a pattern t ∈ 𝒯s (𝒞,𝒳) and a linear regular addi-
tive pattern p, v := (t × x

−p
s) ↓R is either ⊥ or a term of the form

τ 1 + τ 2 + · · · + τm with τ i , i ∈ [1,m] aliased versions of t . Moreover,
if t is linear, then we have:

• v = ⊥ ⇐⇒ Jt × x
−p
s K = ∅, or

• for all σ s.t. σ (t) ∈ 𝒯 (ℱ), Jσ (t)K ⊆ Jx−ps K ⇐⇒ ∃k ∈

[1,m], Jσ (t)K ⊆ Jτk K.

Static analysis of pattern-free properties PPDP 2021, September 6–8, 2021, Tallinn, Estonia

Remove empty sets:

(A1) ⊥ +v ⇒ v
(A2) v + ⊥ ⇒ v
(E1) δ (v1, . . . ,⊥, . . . ,vn) ⇒ ⊥

(E2) ⊥ ×v ⇒ ⊥

(E3) v × ⊥ ⇒ ⊥

Expand sums:

(S1) δ (v1, . . . ,vi +wi , . . . ,vn) ⇒ δ (v1, . . . ,vi , . . . ,vn) + δ (v1, . . . ,wi , . . . ,vn)
(S2) (v1 +v2) ×w ⇒ (v1 ×w) + (v2 ×w)

(S3) v × (w1 +w2) ⇒ (v ×w1) + (v ×w2)

(S4) u + (v +w) ⇒ (u +v) +w
Simplify complements:

(M1) v \ x−⊥s ⇒ ⊥

(M2) v \ ⊥ ⇒ v
(M3) (v1 +v2) \w ⇒ (v1 \w) + (v2 \w)

(M5) ⊥ \v ⇒ ⊥

(M6) α(v1, . . . ,vn) \ (v +w) ⇒ (α(v1, . . . ,vn) \v) \w
(M7) α(v1, . . . ,vn) \ α(t1, . . . , tn) ⇒ α(v1 \ t1, . . . ,vn) + · · · + α(v1, . . . ,vn \ tn)
(M8) α(v1, . . . ,vn) \ β(w1, . . . ,wm) ⇒ α(v1, . . . ,vn) with α , β
Simplify conjunctions:

(T1) x−⊥s × y
−q
s ⇒ x @ y

−q
s

(T2) x
−p
s × y

−q
s ⇒ x @ y

−p
s with p = q ∨ q = ⊥

(T3) α(v1, . . . ,vn) × α(w1, . . . ,wn) ⇒ α(v1 ×w1, . . . ,vn ×wn)

(T4) α(v1, . . . ,vn) × β(w1, . . . ,wm) ⇒ ⊥ with α , β
Simplify aliases:

(L1) x @ ⊥ ⇒ ⊥

(L2) x @ (v +w) ⇒ x @v + x @w
(L3) (x @v) \w ⇒ x @ (v \w)

(L4) (x @v) ×w ⇒ x @ (v ×w)

(L5) v × (x @w) ⇒ x @ (v ×w) with v , y @ u
Simplify p-free:

(P1) x
−p
s × α(v1, . . . ,vn) ⇒ x @ (α(z1

−p
s1 ×v1, . . . , zn

−p
sn ×vn) \ p)

(P2) α(v1, . . . ,vn) × x
−p
s ⇒ α(v1 × z1

−p
s1 , . . . ,vn × zn

−p
sn) \ p

(P3) α(v1, . . . ,vn) × (x
−p
s \ t) ⇒ (α(v1, . . . ,vn) × x

−p
s) \ t if {[x−ps \ t]} , ∅

(P4) y
−q
s × (x

−p
s \ t) ⇒ (y

−q
s × x

−p
s) \ t if {[x−ps \ t]} , ∅

(P5) (x
−p
s \ t) ×v ⇒ (x

−p
s ×v) \ t if {[x−ps \ t]} , ∅

(P6) (x
−p
s \ t) \ q ⇒ x

−p
s \ (t + q) if {[x−ps \ t]} , ∅

(P7) x
−p
s \ t ⇒ ⊥ if {[x−ps \ t]} = ∅

Figure 1: R : reduce patterns of the form p × q; u,v,v1, . . . ,vn , w,w1, . . . ,wn range over quasi-additive patterns, p,q, t range

over regular additive patterns, t1, . . . , tn range over symbolic patterns, x ,y range over pattern variables. α , β expand to all the

symbols in 𝒞, and δ in 𝒞n>0.

PPDP 2021, September 6–8, 2021, Tallinn, Estonia H.Cirstea, P.LERMUSIAUX and P.-E.Moreau

Thus, given a rule f !𝒫 (ls1, . . . , lsn) _ r and a profile p1∗ · · · ∗pn
7→p ∈ 𝒫 , we can use the R to reduce Lls1 × z1

−p1 , . . . , lsn × zn
−pn M

into a sum of tuples of aliased versions of ls1, . . . , lsn (or into ⊥)

and, consequently, to characterize the substitutions σ such that the

elements of σ (Lls1, . . . , lsnM) are pairwise pi -free.

4.3 Establishing pattern-free properties

The substitutions obtained by inference, with the aliasing approach

in the previous section, map variables to quasi-symbolic patterns

such that, when applied to the right-hand side rs of a rewrite rule,
the resulting term is an aliased version of rs . We extend the notion

of ground semantics (Definition 3.2) to such aliased versions of

terms:

Definition 4.2 (Extended ground semantics). Given τ , an
aliased version of t ∈ 𝒯 (ℱ ,𝒳),

• Jτ K =
⋃
ω
⋃
v Jτ [v]ω K with ω ∈ 𝒫os(τ) such that τ |ω =

f !𝒫s (τ1, . . . ,τn), f
!𝒫
s ∈ 𝒟s and v ∈ 𝒯s (𝒞) q-free with q =∑

q′∈𝒬 q′, 𝒬 = {p | ∃p1∗ · · · ∗pn 7→p ∈ 𝒫 s.t. ∀i ∈ [1,n],

{[τi]} ∩ Jpi K = ∅}.

Profile satisfaction and thus, semantics preservation, can be ver-

ified by computing the intersection between the deep semantics of

the instantiated right-hand sides and the ground semantics of the

corresponding patterns in the (co-domain of the) profiles:

Proposition 4.4. Given a linear rule f !𝒫 (ls1, . . . , lsn) _ rs , a
profile π = p1∗ · · · ∗pn 7→p ∈ 𝒫 , and v := Lls1 × z1

−p1
s1 , . . . , lsn ×

zn
−pn
sn M ↓R, then:
• if v = ⊥ then the rule satisfies the profile π ;
• if v = Lλ1

1
, . . . , λ1nM+ Lλ2

1
, . . . , λ2nM+ · · ·+ Lλm

1
, . . . , λmn M with

λ
j
i , j ∈ [1,m] aliased versions of lsi , i ∈ [1,n] then, the rule

satisfies π iff ∀k, {[σ@Lλk
1
, ...,λknM

Lls1, ...,lsnM (rs)]} ∩ JpK = ∅.

Example 4.2. We consider the signature and patterns from Ex-
ample 3.1 and take 𝒫1 = {⊥ 7→p1} and 𝒫2 = {p1∗p1 7→p1}. In order
to prove thatℛ′ is semantics preserving, we use R as stated in Propo-
sition 4.4 to check that the flatten rules satisfy the profile ⊥ 7→p1, and
that the concat rules satisfy the profile p1∗p1 7→p1.

For the rewrite rule flatten(nil) _ nil, since Lnil × x
−p1
List M ↓R=

LnilM the obtained substitution σ
@LnilM
LnilM is the identity. We thus sim-

ply have to check that the right-hand sie is p1-free, i.e. that {[nil]} ∩
Jp1K = ∅, which is obvious. For the rule flatten(cons(int(n), l)) _
cons(int(n),flatten(l)), given that Lcons(int(n), l) × x−⊥List M ↓R=

Lcons(int(n @ y−⊥Int), l @ z−⊥List)M = v1, we have σ
@v1

Lcons(int (n),l)M =

{n 7→ n @ y−⊥Int , l 7→ l @ z−⊥List }. In order to conclude to the profile
satisfaction for this rule, we have to check that {[cons(int(n @ y−⊥Int),

flatten(l @ z−⊥List))]} ∩ Jp1K = ∅. Similarly, for flatten(cons(lst(l),
l ′)) _ concat(flatten(l),flatten(l ′)), we can compute the inferred
right-hand side and we should check that {[concat(flatten(l @ x−⊥List),

flatten(l ′ @ y−⊥List))]} ∩ Jp1K = ∅.
For the rule concat(cons(e, l), l ′) _ cons(e, concat(l , l ′)), the in-

ferred substitution is slightly more complex than in the previous
cases since Lcons(e, l) × x1

−p1
List , l

′ × x2
−p1
List M ↓R= Lcons(e @ (x

−p1
Expr \

lst(l1)), l@y
−p1
List), l

′
@z

−p1
List M, thus, in this case, we should check that

{[cons(e@ (x
−p1
Expr \ lst(l1)), concat(l@y

−p1
List , l

′
@z

−p1
List))]}∩Jp1K = ∅.

For the rule concat(nil, l) _ l we proceed similarly, hence we should
verify that {[l @ x

−p1
List]} ∩ Jp1K = ∅, which is obvious.

Some of the intersections in the example are clearly empty while

for others the proof is less obvious. To systematically check the

emptiness of such intersections we use an approach similar to the

one in [9] which consists in finding an extended pattern whose

semantics is equivalent to that of the instantiated right-hand side,

express then the deep semantics of this pattern as a union of ground

semantics and finally, check the intersections with the semantics of

the profile pattern by computing the corresponding conjunctions

using R.

Note that the ground semantics of a term f !𝒫s (t1, . . . , tn) does not

only depend on the head symbol f !𝒫s and, more precisely, on (the co-

domain of) its annotation, as it was the case for the simple profiles

in [9], but also on its subterms. We can nevertheless systematically

construct for any term an extended pattern which is semantically

equivalent:

Definition 4.3 (Semantics eqivalent). Given τ , an aliased
version of a term t ∈ 𝒯 (ℱ ,𝒳), its semantics equivalent τ̃ ∈ 𝒫(𝒞,𝒳 a)

is a quasi-symbolic pattern defined as follows:
• if τ = c(τ1, . . . ,τn) with c ∈ 𝒞, then τ̃ := c(τ̃1, . . . , ˜τn);
• if τ = f !𝒫s (τ1, . . . ,τn) with f ∈ 𝒟, then τ̃ := y @ z−⋄τs ;
• if τ = x @ q, then τ̃ := x @ q;

where y, z−⋄τs are fresh variables and ⋄f !𝒫s (τ1, . . . ,τn) :=
∑
q′∈𝒬′ q′

with𝒬′ = {p | ∃p1∗ · · · ∗pn 7→ p ∈ 𝒫 s.t. ∀i ∈ [1,n], {[τ̃i]} ∩ Jpi K =
∅}.

Hence, semantics equivalents are aliased versions of constructor

patterns such that:

Proposition 4.5. Given τ , an aliased version of a t ∈ 𝒯 (ℱ ,𝒳),
Jτ K = Jτ̃ K.

The notions of deep and ground semantics for general terms

used in this paper generalize those in [9] but when restricting to

extended patterns they are indistinguishable. Consequently, we can

use the method introduced in [9] to express the deep semantics

of any extended pattern as a union of ground semantics of quasi-

additive patterns: {[τ̃]} = Jr1K∪ · · · ∪ JrmK. We should point out that

this exact method is the only one directly borrowed from [9] and

that the only possible approximations are situated in the definition

of (extended) ground semantics. We can then use R to check the

emptiness of the intersection between the deep semantics of a

semantics equivalent pattern and a profile pattern:

Proposition 4.6. Given a linear quasi-additive pattern t and a
linear regular additive pattern q, we have p × t =⇒∗

R
⊥ if and only if

Jp × qK = ∅.

Once we have computed the semantics equivalent of the inferred

right-hand side, the intersection between its deep semantics and the

ground semantics of the pattern from the annotation (see Proposi-

tion 4.4) can then be computed by decomposing the deep semantics

into ground semantics and using R to check the emptiness, in order

to conclude on the profile satisfaction.

Example 4.3. We consider the inferred right-hand sides obtained
in Example 4.2 and check the corresponding intersections.

Static analysis of pattern-free properties PPDP 2021, September 6–8, 2021, Tallinn, Estonia

Since l@y
−p1
List and l

′
@z

−p1
List are their own semantics equivalents,

in order to compute the semantics equivalent of rs := cons(e@(x
−p1
Expr \

lst(l1)), concat(l@y
−p1
List , l

′
@z

−p1
List)), we need to check that {[y−p1List]}∩

Jp1K = ∅. Using the method from [9] mentioned above, we obtain
{[y−p1List]} = Jy−p1List K∪Jx−p1Expr \ lst(l1)K∪Jz−p1Int K. As the last two are not

of sort List , and since (y−p1List ×p1) ↓R= ⊥, the intersection with Jp1K is
indeed empty. The semantics equivalent of concat(l@y

−p1
List , l

′
@z

−p1
List)

is thusu@x
−p1
List and consequently, r̃s = cons(e@(x

−p1
Expr \lst(l1)),u@

y
−p1
List).
To verify {[rs]}∩Jp1K = {[r̃s]}∩Jp1K = {[cons(x−p1Expr \lst(l1),y

−p1
List)]}∩

Jp1K = ∅, we decompose again the deep semantics and have to check
that (Jcons(x−p1Expr \ lst(l1),y

−p1
List)K ∪ Jx−p1Expr \ lst(l1)K ∪ Jy−p1List K ∪

Jz−⊥Int K) ∩ Jp1K = ∅. Since (cons(x−p1Expr \ lst(l1),y
−p1
List) × p1) ↓R= ⊥

and (y−p1List × p1) ↓R= ⊥, the intersection is empty. Consequently, the
rule concat(cons(e, l), l ′) _ cons(e, concat(l , l ′)) satisfies the profile
of concat, and thus, is semantics preserving.

We proceed similarly to show that all the intersections in Exam-
ple 4.2 are empty and conclude thus, that the CBTRS ℛ′ is semantics
preserving.

Note that the approach does not depend on the termination of

the underlying CBTRS since the semantics is preserved even for an

infinite reduction. Nevertheless, in practice, it is mostly interesting

when the system is at least weakly normalizing.

5 CHECKING PATTERN-FREENESS OF

NON-LINEAR TERMS

The semantics preservation verification technique proposed here

relies on the ground semantics of terms which represent an over-

approximation of their potential normal forms and this could ob-

viously lead to some false negatives. One of the reasons for these

potential false negatives comes from the way we handle the non-

linear right-hand sides of rules: since the semantics of a term with

its variables replaced by fresh (distinct) ones is included in the se-

mantics of the original terms, we can linearize, if necessary, the

right-hand sides of the rules of the CBTRS and subsequently check

that it is semantics preserving.

Example 5.1. We consider the signature Σ = (𝒮,ℱ) with 𝒮 =
{s1, s2} andℱ = 𝒞⊎𝒟, where 𝒞 = {a : s2,b : s2, c : s2∗s2 7→ s1,d : s1 7→
s1} and 𝒟 = { f !𝒫f

: s1 7→ s1, д
!𝒫д

: s1 7→ s2} and the rewrite system
f (c(x ,y)) _ c(x ,x)
f (d(z)) _ c(д(z),д(z))
д(c(x ,y)) _ a
д(d(z)) _ b

It is clear that the normal forms of this rewrite system are c(a,b)-
free but the method described so far fails in checking that the profile
𝒫f = {⊥ 7→ c(a,b)} is satisfied with 𝒫д = ∅. This is because the two
occurrences of д(z) in the term c(д(z),д(z)) are considered separately
as if the global term were linearized and thus, for the second rule we
have Jc(д(z),д(z))K = Jc(x ,y)K which contains the pattern c(a,b)
contradicting the profile.

The approach can be customized to take into account some forms

of non-linearity and for this, we first adapt the definitions of pattern-

freeness and ground semantics (Definitions 3.1 and 4.2), to consider

the correlation between the identical subterms headed by a defined

symbol. These modifications concern only the terms involving

defined symbols; the definitions are unchanged for constructor

patterns (and left thus implicit in the new definitions).

Definition 5.1 (Pattern-free terms and Extended seman-

tics). Given a regular additive pattern p and a term t ∈ 𝒯 (ℱ ,𝒳 a),

• t is p-free iff ∀ω ∈ 𝒫os(t) such that t |ω = f !𝒫s (t1, . . . , tn)
with f ∈ 𝒟s and ti ∈ 𝒯 (𝒞,𝒳) for all i ∈ [1,n], the term
t
[
f !𝒫s (t1, . . . , tn) 7→ v

]
isp-free for allq-free valuev ∈ 𝒯s (𝒞)

with q =
∑
q′∈𝒬 q′,𝒬 = {r | ∃r1∗ . . . ∗rn 7→ r ∈ 𝒫 s.t. ∀i ∈

[1,n], ti ri -free};
• JtK =

⋃
ω
⋃
v Jt

[
t |ω 7→ v

]
K with ω ∈ 𝒫os(t) such that t |ω =

f !𝒫s (t1, . . . , tn), f !𝒫s ∈ 𝒟s ,∀i ∈ [1,n], ti ∈ 𝒯 (𝒞,𝒳), and
v ∈ 𝒯s (𝒞) q-free with q =

∑
q′∈𝒬 q′, 𝒬 = {r | ∃r1∗ . . . ∗rn

7→ r ∈ 𝒫 s.t. ∀i ∈ [1,n], {[ti]} ∩ Jri K = ∅};

with t [u 7→ v] denoting the term t where all occurrences of u have
been replaced by v .

While the definitions in the previous sections did not take into

account multiple occurrences of a variable when they were below a

defined symbol, the above definition does so when a correlation can

be identified, i.e. when the subterms headed by a defined symbol

are identical.

Note that in Definition 5.1 all identical terms are replaced by the

same value and thus, the approach described in this section applies

effectively only for confluent CBTRSs, leading potentially to false

positives for non-confluent systems. Moreover, for some reasons

explained intuitively below, the propositions of this section and

their proofs assume a strict reduction strategy.

Example 5.2. We consider the signature from Example 5.1. Using
any of the definitions of ground semantics in this paper, we have
Jc(xs2 ,xs2)K = {c(a,a), c(b,b)}. Moreover, the updated definitions in
this section recognize that both instances of the variable zs1 in the
term c(д(zs1),д(zs1)) are correlated and consider that, by confluence,
both instances of д(zs1) are eventually reduced to a same term. Hence,
when considering the profiles 𝒫f = {⊥ 7→ c(a,b)} and 𝒫д = ∅, we
have Jc(д(zs1),д(zs1))K =

⋃
v ∈Jxs

2
KJc(д(zs1),д(zs1))

[
д(zs1) 7→ v

]
K

=
⋃
v ∈Jxs

2
KJc(v,v)K = Jc(xs2 ,xs2)K.

On the other hand, if the occurrences of the same variable are
not in a constructor term and not in identical subterms headed by a
defined symbol, the definitions consider them as distinct variables. For
example, the semantics of the term c(д(f (xs1)),д(xs1)) considers the
two occurrences of the variable xs2 as if they were different since there
is no way to correlate them through the respective reductions of the
terms headed by f and д in the general case. Similarly, if we consider
a defined symbol h : s1∗s2 7→ s1 and the term h(c(xs2 ,xs2),xs2), while
the correlation between the instances of the variable xs2 below the
constructor symbol c are taken into account as stated before, there is
no correlation with the occurrence of xs2 in the second argument of h .

PPDP 2021, September 6–8, 2021, Tallinn, Estonia H.Cirstea, P.LERMUSIAUX and P.-E.Moreau

The strong relationship between pattern-freeness and semantics,

given by Propositions 3.1 and 3.2, remains valid for these new defi-

nitions. Thus, c(xs2 ,xs2) and c(д(zs1),д(zs1)) in the above example

are c(a,b) and c(b,a)-free.
Due to the way Definition 5.1 handles the different occurrences

of a given variable and, in particular, to the lack of correlation

between identical variables below different defined symbols, the

semantics is preserved only when the substitutions involved in

the reduction are value substitutions, i.e. in the context of rewrit-

ing with a strict reduction strategy. Moreover, the semantics is

not necessarily preserved at each intermediate step but eventually

retrieved:

Proposition 5.1. Given a strictly semantics preserving CBTRS
ℛ, we have:

∀u,v ∈ 𝒯 (ℱ) s.t. u −→ℛ v,∃v ′ s.t. v −→∗
ℛ v ′ ∧ Jv ′K ⊆ JuK

For example, if we consider the system ℛ presented in Exam-

ple 5.1 then c(д(c(a,b)),д(c(a,b))) −→ℛ c(a,д(c(a,b))) and, while
the latter is not c(a,b)-free, its reduct c(a,a) is.

This property guarantees that the normal forms preserve the

semantics and consequently, the pattern-freeness properties of the

initial term, only when the CBTRS is confluent; our approach ap-

plies thus only for confluent CBTRS. For example, if we add to the

rewrite system in Example 5.1 the rule д(c(a,b)) _ b, rendering it

non-confluent, we would obtain c(a,д(c(a,b))) −→ℛ c(a,b) with
this latter normal form clearly not c(a,b)-free; our method reports

nevertheless the non-confluent system as profile compliant.

The decomposition of the deep semantics into ground semantics

introduced in [9] also applies to non-linear patterns. Moreover,

we can easily adapt the construction of the semantics equivalent

introduced in Definition 4.3 by simply using, instead of the arbi-

trary names for the fresh variables, variable names which keep

track of the original term, i.e. the semantics equivalent of a term

f (t1, . . . , tn) is the variable named f (t1, . . . , tn).
The inference of the shape of the variables in the left-hand side

of a rule, w.r.t. value substitutions, can then be performed as before

using R:

Proposition 5.2. Given a rule f !𝒫 (l1, . . . , ln) _ r , a profile
π = p1∗ · · · ∗pn 7→ p ∈ 𝒫 , and v := Ll1 × x

−p1
s1 , . . . , ln × x

−pn
sn M ↓R,

then:
• if v = ⊥ then the rule strictly satisfies the profile π ;
• ifv = λ1+ · · ·+λm , with, for all j ∈ [1,m], λj = Lλj

1
, . . . , λ

j
nM

such that λji aliased versions of li , i ∈ [1,n], we have:

∀j, {[σ@λk

Ll1, ...,lnM(r)]} ∩ JpK = ∅ =⇒ the rule strictly satisfies π .

Similarly, as before, we can verify the emptiness of conjunctions

of patterns using R, but some other cases might appear when non-

linear patters are concerned. In particular, since we deal with non-

linear terms, a variable can have several occurrences with different

aliased patterns in the aliased version, like in the term c(x@a,x@b),
indicating an empty semantics.

Proposition 5.3. Given ρ an aliased version of a constructor
pattern r and a linear regular additive pattern q, withu := (ρ × q) ↓R,
we have Jρ × qK = ∅ if and only if

• u = ⊥, or

• u = ρ1 + · · · + ρn , with ρi , i ∈ [1,n], aliased versions of r s.t.
∃x ∈ 𝒱ar (r) such that ρi@x =⇒

∗
R
⊥.

The first item corresponds to the linear case (Proposition 4.3)

while the second checks if the (semantics of the) different occur-

rences of the same variable are consistent (e.g. check that Ja×bK = ∅

for c(x @ a,x @ b)). In the latter, the products generated by the

different annotations of a same variable involve only linear patterns,

and can indeed be checked using R:

Proposition 5.4. Given the linear quasi-additive patterns p and
q such that all variables in p and q have the same pattern annotation,
(p × q) ↓R= ⊥ iff Jp × qK = ∅.

Example 5.3. To prove that c(xs2 ,xs2) is c(a,b)-free we first ex-
press its deep semantics in terms of ground semantics, {[c(xs2 ,xs2)]} =
Jc(xs2 ,xs2)K∪Jxs2K, and then check the emptiness for the intersections
Jxs2K ∩ Jc(a,b)K and Jc(xs2 ,xs2)K ∩ Jc(a,b)K. The former is immedi-
ately checked since c(a,b) is not a term of s2. For the latter, we have
c(xs2 ,xs2) × c(a,b) =⇒∗

R
c(x @ a,x @ b) and since a×b =⇒∗

R
⊥ we

can conclude that Jc(xs2 ,xs2)K∩Jc(a,b)K = Jc(xs2 ,xs2)×c(a,b)K = ∅.
We can proceed similarly for c(f (xs2), f (xs2)) since its semantics

equivalent is c(fx @y−⊥s2 , fx @ z−⊥s2), with fx the variable generated
when computing the semantics equivalent, and the same reductions
as above allow us to conclude that the term is c(a,b)-free.

Since the profile satisfaction is only established w.r.t. value sub-
stitutions, the semantics is preserved only when the underlying

reduction strategy for the analysed CBTRS is a strict one. In fact, we

can prove that unrestricted reductions could be considered with spe-

cific constraints on the profiles (e.g. when each symbol has at most

one profile) but, for simplicity, we have not presented these con-

straints. We also conjecture the approach is valid for unrestricted

strategies.

6 RELATEDWORK

This paper proposes a method to verify the absence of specified

patterns in the terms reachable by a rewrite relation. Different

related work have proposed several approaches to provide similar

guarantees on the shape of corresponding normal forms:

Pattern eliminating transformation The general approach and

verification method proposed here are based on the notions of

pattern-freeness and semantics introduced in [9] to characterize

the result of pass-like program transformations. The approach in [9]

used simple annotations indicating just the patterns supposed to be

absent from the final result without specifying any pre-conditions

on the arguments of the analysed function. Moreover, the results

had been certified only for right linear CBTRSs. Here, we use anno-

tations describing a set of pre- and post-conditions, thus allowing

for a substantially more precise description of the expected be-

haviour of the reduction associated to each function symbol. For

comparison, among the examples provided in the implementation
1
,

only flatten1, negativeNF and skolemization can be handled with

the method in [9] (as shown in the Figure 2, where examples which

could be checked in [9] are marked !, while new examples which

1
the source code and examples can be downloaded from http://github.com/

plermusiaux/pfree_check and the online version is available at http://htmlpreview.

github.io/?https://github.com/plermusiaux/pfree_check/blob/webnix/out/index.html

http://github.com/plermusiaux/pfree_check
http://github.com/plermusiaux/pfree_check
http://htmlpreview.github.io/?https://github.com/plermusiaux/pfree_check/blob/webnix/out/index.html
http://htmlpreview.github.io/?https://github.com/plermusiaux/pfree_check/blob/webnix/out/index.html

Static analysis of pattern-free properties PPDP 2021, September 6–8, 2021, Tallinn, Estonia

could be checked only with the approach described here are marked

'). Non-linearity is also handled now in the case of a strict reduction

strategy.

Type based approachesMultiple approaches propose to use type

checking to provide varied guarantees to functional programs. In

particular, notions such as constructor subtypes [5] could be used

to construct complex type systems with some types describing syn-

tactical properties similar to the ones considered here. Comparing

to our approach which simply relies on annotating function sym-

bols, defining such type systems is a substantially more involved

process. Some approaches, such as refinement types [12] or Liquid

Types [25, 30], also propose to enrich type systems with some form

of annotation, and can thus be seen as less intrusive alternatives

to provide guarantees on the results of functional programs. Some

inference mechanisms trying to deduce some of these annotations

have also been proposed [1]. Nevertheless, we claim the approach

proposed here relies on simpler forms of annotations that are both

easier to express (since not needing any declaration of auxiliary

types) and understand (since not relying on complex annotation

semantics).

Recursion schemes When dealing with higher order functions,

some approaches propose to rely on recursion schemes, a form

of higher order grammars that are used as tree generators, to de-

scribe computation trees [20]. In such approaches, the verification

problems are solved by model checking the recursion schemes gen-

erated from the given functional program. Higher order recursion

schemes have also been extended to include pattern matching [24]

and provide the basis for automatic abstraction refinement. While

these approaches provide the undeniable advantage of dealing with

higher-order programs without additional external inputs, we claim

that annotated CBTRSs are easier to grasp when specifying first-

order functional programs, and the use of the annotation system

also contributes to a more precise (and less intrusive) way to express

and control the considered over-approximation.

XML Transformation Exact type-checking of XML processing

programs is another field that primarily deals with a similar ver-

ification problem of tree transformations. In this context, multi-

ple approaches[23, 29] proposed to use Tree Transducers as the

model of XML programming, and use inverse type inference to type-

check XML transformations modeled by such Tree Transducers.

Kobayashi et al. also introduced in [21] a class of higher order tree

transducers which can be modeled by recursion schemes and thus,

provided a sound and complete algorithm to solve such verifica-

tion problem. Other approaches, such as XDuce[19] and CDuce[7],

propose to perform type checking of functional XML programs

using type-annotation. These approaches rely on a semantics sub-

typing[13] method fairly similar to the semantics preservation we

consider here, but that does not provide support for non right-

linear systems. Overall, while these methods can perform similar

verification, they are also confined to the XML framework that

can be unnecessarily cumbersome when dealing with functional

programming.

Tree automata completion Tree automata is a natural approach

to describe syntactic properties of tree-shaped terms. When consid-

ered in the context of term rewriting system, completion techniques

have been defined to compute the set of terms reachable by the

rewrite relation as an extended tree automaton [14]. Moreover, tree

automata could be used to provide more precise characterizations

of the considered terms (and their normal forms) than the pattern-

free properties considered here. This approach could, therefore,

be applied to provide similar guarantees as the ones presented

in this paper, but is nevertheless, constrained by its conditional

termination that restricts both the TRS and the set of equational

approximations used [15, 27]. Recently, a counter-example based

abstraction refinement procedure was proposed as a way to control

the over-approximation [17].

We provide in the following table an execution time comparison

on some classical scenarios between our implementation, Tim-

buk3 [14] and Timbuk4 [17]. Note that we only considered cases

where the function profiles could be expressed (and thus verified)

by our approach. We are indeed limited by the expressiveness of

profiles defined using pattern-free properties (which excludes clas-

sical scenarios such as ordered trees or size constraints, that can be

handled with tree automata completion approaches). However, we

argue that pattern profiles are easy to express and understand by a

user, and are powerful enough, particularly in a compilation context

(where differences between the intermediate languages can, in our

experience, be simply and clearly expressed with anti-patterns).

Therefore, while the tree automata completion provides a broader

approach, our benchmarks show that Timbuk4 [17] is significantly

slower, and that Timbuk3 [14] fails (marked %) on a few cases, and

while faster, is still slower than our implementation:

pfree check timbuk 3.2 timbuk 4

flatten1 ! 21µs % ∞ ! 685ms
flatten2 ' 31µs % ∞ ! 975ms
negativeNF ! 395µs ! 3, 2ms ! 104s
skolem ! 45µs % 1, 5s ! 1, 6s
delete ' 107µs ! 2, 2ms ! 286ms
reverse ' 152µs ! 614ms ! 1, 4s
reverse2 ' 429µs ! 714ms ! 2, 3s
insertSort ' 211µs ! 65ms ! 731ms
mergeSort ' 872µs ! > 1h ! 1, 4s
multiply0 ' 11µs ! 2, 4ms ! 225ms

Figure 2: Comparison table between our method, Timbuk

3.2 and 4. ! indicates the properties can be verified and %

denotes failure; ' is used to indicate the properties could

not be verified with the method in [9] but could be verified

with the current approach.

The examples in the table are available on GitHub and represent

some classical use-cases: flatten1 and flatten2 correspond to the

systems presented in the introduction, in negativeNF we can check

that the transformed formulae are in negation normal form, skolem
allows us to verify that a formula contains no existential quantifier

after its skolemisation, for delete and reverse we can check the

expected result for the respective operation for an ordered list while

for reverse2 we verify the result of performing the reverse twice,

insertSort and mergeSort verify that the result is a sorted list, and

multiply0 verifies that multiplying by 0 (in Peano arithmetic) results

in 0. In these examples, the most complex patterns in annotations

(which are determinant for the complexity of the method) contain

3 symbols and are of depth of 3, and the patterns of the rules of the

PPDP 2021, September 6–8, 2021, Tallinn, Estonia H.Cirstea, P.LERMUSIAUX and P.-E.Moreau

CBTRSs contain at most a dozen symbols and up to a depth of 5. The

provided repository also contains a branch running benchmarks

with random patterns involving symbols of arity at most 6 and

going up to a depth of 6; checking a CBTRS of 25 such rules is done

in around 1s.

7 CONCLUSIONS

We have proposed a method to statically analyse constructor term

rewriting systems and verify the absence of patterns from the corre-

sponding normal forms. The approach is non-intrusive and avoids

the burden of specifying a specific language to characterize the

result of the transformation, as the user is simply requested to indi-

cate the pattern profiles for the corresponding functions. Although

the method is expected to be used for CBTRSs proved terminat-

ing [2, 16, 18], the static analysis can be performed regardless of the

termination of the system, and still guarantees (for linear CBTRSs)

that all the intermediate terms in the reduction are pattern-free. In

the non-linear case, the semantics is not necessarily preserved at

each reduction step and thus, may not be ultimately retrieved if the

system is not at least weakly normalizing.

The method is based on an over-approximation of the potential

normal forms defined by the profile annotations and, as such, can

result in false negatives when profiles are not sufficiently precise

(as was the case when no profile was specified for the function

symbol concat for the system in the introduction). The user can

nevertheless specify not only the patterns that should be elimi-

nated in the result but also the pre-conditions necessary for each

of these pattern-free post-conditions and we argue this allows for a

fairly precise specification of the corresponding functions in prac-

tice. If the analysed CBTRS features non-linear right-hand sides,

these could be linearized before applying the general method but

this could result in additional false negatives. When the CBTRS

is confluent, as is the case for deterministic functional programs,

and if a strict reduction strategy is used, the method handles also

some form of non-linear right-hand sides. We conjecture that the

profile satisfaction under strict strategy implies the preservation of

semantics for the normal forms obtained in the general case, and

the proof is under investigation.

The method has been implemented in Haskell and the results

in terms of expressiveness and efficiency are very encouraging as

shown by the table in the previous section.

We are focusing now on extending the method to handle higher-

order functions. While the approach could adapt rather straightfor-

wardly for higher-order functions with a unique annotated profile,

the problem becomes more convoluted when considering multiple

profiles, as proposed here.

REFERENCES

[1] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. 1994. Soft Typing

with Conditional Types. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 1994, Hans-Juergen Boehm, Bernard Lang, and

Daniel M. Yellin (Eds.). ACM Press, 163–173. https://doi.org/10.1145/174675.

177847

[2] Thomas Arts and Jürgen Giesl. 2000. Termination of term rewriting using de-

pendency pairs. Theoretical Computer Science 236, 1-2 (2000), 133–178. https:

//doi.org/10.1016/S0304-3975(99)00207-8

[3] Franz Baader and Tobias Nipkow. 1998. Term Rewriting and All That. Cambridge

University Press.

[4] Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau, and Antoine

Reilles. 2007. Tom: Piggybacking Rewriting on Java. In International Conference
on Term Rewriting and Applications, RTA 2007 (Lecture Notes in Computer Science,
Vol. 4533). Springer, 36–47. https://doi.org/10.1007/978-3-540-73449-9_5

[5] Gilles Barthe and Maria João Frade. 1999. Constructor Subtyping. In European
Symposium on Programming Languages and Systems, ESOP’99 (Lecture Notes in
Computer Science, Vol. 1576). Springer, 109–127. https://doi.org/10.1007/3-540-

49099-X_8

[6] Françoise Bellegarde. 1991. Program Transformation and Rewriting. In Interna-
tional Conference on Rewriting Techniques and Applications, RTA-91 (Lecture Notes
in Computer Science, Vol. 488). Springer, 226–239. https://doi.org/10.1007/3-540-

53904-2_99

[7] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. 2003. CDuce: an XML-

centric general-purpose language. In ACM SIGPLAN International Conference
on Functional Programming, ICFP 2003, Colin Runciman and Olin Shivers (Eds.).

ACM, 51–63. https://doi.org/10.1145/944705.944711

[8] Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and Tomás Vojnar. 2005.

Abstract Regular Tree Model Checking. In International Workshop on Verification
of Infinite-State Systems, INFINITY 2005 (Electronic Notes in Theoretical Computer
Science, Vol. 149), Jirí Srba and Scott A. Smolka (Eds.). Elsevier, 37–48. https:

//doi.org/10.1016/j.entcs.2005.11.015

[9] Horatiu Cirstea, Pierre Lermusiaux, and Pierre-Etienne Moreau. 2020. Pattern

Eliminating Transformations. In International Symposium on Logic-Based Program
Synthesis and Transformation, LOPSTR 2020 (Lecture Notes in Computer Science,
Vol. 12561), Maribel Fernández (Ed.). Springer, 74–92. https://doi.org/10.1007/978-

3-030-68446-4_4

[10] Horatiu Cirstea and Pierre-Etienne Moreau. 2019. Generic Encodings of Con-

structor Rewriting Systems. In International Symposium on Principles and Practice
of Programming Languages, PPDP 2019. ACM, 8:1–8:12. https://doi.org/10.1145/

3354166.3354173

[11] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-

Oliet, José Meseguer, and Carolyn L. Talcott. 2003. The Maude 2.0 System. In

International Conference on Rewriting Techniques and Applications, RTA 2003
(Lecture Notes in Computer Science, Vol. 2706). Springer, 76–87. https://doi.org/10.

1007/3-540-44881-0_7

[12] Timothy S. Freeman and Frank Pfenning. 1991. Refinement Types for ML. In ACM
SIGPLAN’91 Conference on Programming Language Design and Implementation
(PLDI). ACM, 268–277. https://doi.org/10.1145/113445.113468

[13] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2002. Semantic

Subtyping. In IEEE Symposium on Logic in Computer Science, (LICS 2002). IEEE
Computer Society, 137–146. https://doi.org/10.1109/LICS.2002.1029823

[14] Thomas Genet. 2014. Towards Static Analysis of Functional Programs Using

Tree Automata Completion. In International Workshop on Rewriting Logic and Its
Applications, WRLA 2014 (Lecture Notes in Computer Science, Vol. 8663). Springer,
147–161. https://doi.org/10.1007/978-3-319-12904-4_8

[15] Thomas Genet. 2016. Termination criteria for tree automata completion. Journal
of Logical and Algebraic Methods in Programming 85, 1 (2016), 3–33. https:

//doi.org/10.1016/j.jlamp.2015.05.003

[16] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. 2006.

Mechanizing and Improving Dependency Pairs. Journal of Automatic Reasoning
37, 3 (2006), 155–203. https://doi.org/10.1007/s10817-006-9057-7

[17] Timothée Haudebourg, Thomas Genet, and Thomas P. Jensen. 2020. Regular

language type inference with term rewriting. Proceedings of the ACM on Program-
ming Languages 4, ICFP (2020), 112:1–112:29. https://doi.org/10.1145/3408994

[18] Nao Hirokawa and Aart Middeldorp. 2005. Automating the dependency pair

method. Information and Computation 199, 1-2 (2005), 172–199. https://doi.org/

10.1016/j.ic.2004.10.004

[19] Haruo Hosoya and Benjamin C. Pierce. 2003. XDuce: A statically typed XML

processing language. ACM Trans. Internet Techn. 3, 2 (2003), 117–148. https:

//doi.org/10.1145/767193.767195

[20] Naoki Kobayashi. 2009. Types and higher-order recursion schemes for verification

of higher-order programs. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2009. ACM, 416–428. https://doi.org/10.1145/

1480881.1480933

[21] Naoki Kobayashi, Naoshi Tabuchi, and Hiroshi Unno. 2010. Higher-order multi-

parameter tree transducers and recursion schemes for program verification. In

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2010. ACM, 495–508. https://doi.org/10.1145/1706299.1706355

[22] David Lacey and Oege de Moor. 2001. Imperative Program Transformation by

Rewriting. In International Conference on Compiler Construction, CC 2001 (Lecture
Notes in Computer Science, Vol. 2027), Reinhard Wilhelm (Ed.). Springer, 52–68.

https://doi.org/10.1007/3-540-45306-7_5

[23] Tova Milo, Dan Suciu, and Victor Vianu. 2003. Typechecking for XML trans-

formers. J. Comput. Syst. Sci. 66, 1 (2003), 66–97. https://doi.org/10.1016/S0022-

0000(02)00030-2

[24] C.-H. Luke Ong and Steven J. Ramsay. 2011. Verifying higher-order functional

programs with pattern-matching algebraic data types. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011. ACM, 587–598.

https://doi.org/10.1145/174675.177847
https://doi.org/10.1145/174675.177847
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1007/978-3-540-73449-9_5
https://doi.org/10.1007/3-540-49099-X_8
https://doi.org/10.1007/3-540-49099-X_8
https://doi.org/10.1007/3-540-53904-2_99
https://doi.org/10.1007/3-540-53904-2_99
https://doi.org/10.1145/944705.944711
https://doi.org/10.1016/j.entcs.2005.11.015
https://doi.org/10.1016/j.entcs.2005.11.015
https://doi.org/10.1007/978-3-030-68446-4_4
https://doi.org/10.1007/978-3-030-68446-4_4
https://doi.org/10.1145/3354166.3354173
https://doi.org/10.1145/3354166.3354173
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.1145/113445.113468
https://doi.org/10.1109/LICS.2002.1029823
https://doi.org/10.1007/978-3-319-12904-4_8
https://doi.org/10.1016/j.jlamp.2015.05.003
https://doi.org/10.1016/j.jlamp.2015.05.003
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1145/3408994
https://doi.org/10.1016/j.ic.2004.10.004
https://doi.org/10.1016/j.ic.2004.10.004
https://doi.org/10.1145/767193.767195
https://doi.org/10.1145/767193.767195
https://doi.org/10.1145/1480881.1480933
https://doi.org/10.1145/1480881.1480933
https://doi.org/10.1145/1706299.1706355
https://doi.org/10.1007/3-540-45306-7_5
https://doi.org/10.1016/S0022-0000(02)00030-2
https://doi.org/10.1016/S0022-0000(02)00030-2

Static analysis of pattern-free properties PPDP 2021, September 6–8, 2021, Tallinn, Estonia

https://doi.org/10.1145/1926385.1926453

[25] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In

ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2008, Rajiv Gupta and Saman P. Amarasinghe (Eds.). ACM, 159–169. https:

//doi.org/10.1145/1375581.1375602

[26] Grigore Rosu and Traian-Florin Serbanuta. 2010. An overview of the K semantic

framework. Journal of Logic and Algebraic Programming 79, 6 (2010), 397–434.

https://doi.org/10.1016/j.jlap.2010.03.012

[27] Toshinori Takai. 2004. A Verification Technique Using Term Rewriting Systems

and Abstract Interpretation. In International Conference on Rewriting Techniques
and Applications, RTA 2004 (Lecture Notes in Computer Science, Vol. 3091). Springer,
119–133. https://doi.org/10.1007/978-3-540-25979-4_9

[28] Terese. 2003. Term Rewriting Systems. Cambridge University Press. M. Bezem, J.

W. Klop and R. de Vrijer, eds.

[29] Akihiko Tozawa. 2006. XML Type Checking Using High-Level Tree Transducer.

In International Symposium on Functional and Logic Programming, FLOPS 2006
(Lecture Notes in Computer Science, Vol. 3945), Masami Hagiya and Philip Wadler

(Eds.). Springer, 81–96. https://doi.org/10.1007/11737414_7

[30] Niki Vazou, Eric L. Seidel, and Ranjit Jhala. 2014. LiquidHaskell: experience

with refinement types in the real world. In ACM SIGPLAN symposium on Haskell,
Wouter Swierstra (Ed.). ACM, 39–51. https://doi.org/10.1145/2633357.2633366

[31] Eelco Visser. 1999. Strategic Pattern Matching. In International Conference on
Rewriting Techniques and Applications, RTA-99 (Lecture Notes in Computer Science,
Vol. 1631). Springer, 30–44. https://doi.org/10.1007/3-540-48685-2_3

https://doi.org/10.1145/1926385.1926453
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1007/978-3-540-25979-4_9
https://doi.org/10.1007/11737414_7
https://doi.org/10.1145/2633357.2633366
https://doi.org/10.1007/3-540-48685-2_3

	Abstract
	Acknowledgments
	1 Introduction
	2 General Notions and Notations
	2.1 Constructor Based Term Rewriting System
	2.2 Extended Patterns and Ground Semantics

	3 Annotated Terms and Semantics Preserving CBTRS
	3.1 Pattern-free Terms and their Semantics
	3.2 Semantics preserving CBTRS

	4 Verifying semantics preservation
	4.1 Annotated and alias variables
	4.2 Inferring the shape of variables
	4.3 Establishing pattern-free properties

	5 Checking pattern-freeness of non-linear terms
	6 Related work
	7 Conclusions
	References

