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Abstract—Rewriting is a formalism widely used in computer
science and mathematical logic. The classical formalism has been
extended, in the context of functional languages, with an order
over the rules and, in the context of rewrite based languages, with
the negation over patterns. We have proposed a concise and clear
algorithm computing the difference over patterns which can be
used to define generic encodings of constructor term rewriting
systems with negation and order into classical term rewriting
systems. As a direct consequence, established methods used for
term rewriting systems can be applied to analyze properties of
the extended systems. The approach can also be seen as a generic
compiler which targets any language providing basic pattern
matching primitives. The formalism provides also a new method
for deciding if a set of patterns subsumes a given pattern and thus,
for checking the completeness of a set of patterns, the presence
of useless patterns, or the absence of some patterns. The latter is
particularly useful when one wants to verify that some patterns
are absent from the result of a particular transformation. Several
extensions have been proposed to statically verify the absence
of specified patterns from the reachable terms of a constructor
based term rewriting systems.

Index Terms—pattern matching, term rewriting, static analy-
sis, compilation

I. INTRODUCTION

Rewriting is a very powerful formalism used, for example,
in semantics in order to describe program behaviours [1], [2]
and program transformations [3], [4], in automated reasoning
when describing by inference rules a logic, a theorem prover
or a constraint solver [5]. It is also used to compute in systems
making the notion of rule explicit, like Mathematica [6],
Maude [7], Stratego [8], or Tom [9].

Rewrite rules consist of a pattern that describes the shape
of the objects to be transformed and the way they will be
transformed. The application of the rewrite rules is decided
locally and independently of the other rules and thus, rewriting
is very practical for describing schematically and locally the
transformations one wants to operate. Comparing to the gen-
eral rewriting formalism, rule- and pattern-based programming
languages generally use an application strategy and this is
particularly convenient when an uncontrolled application of
the rules might not terminate or lead to different results
depending on the rule and context chosen at each step of
the reduction. Simple strategies like the ordered application
of rules used in functional programming languages, generally

allow for concise and clear specifications which avoid an
exhaustive specification of alternative and default cases.

It is interesting to analyze such programs specified using
ordered rules and determine whether they terminate and what
is the shape of the potential results when this is the case.
On the other hand, the proof techniques and tools used are
designed for uncontrolled rewriting and thus, can’t be applied
directly for such ordered systems. There are several works
describing powerful techniques for analyzing the termination
of functional programs when the rules are ordered [10]–[13]
but they can’t be easily adapted to be used as a compiler of
ordered rules towards unrestricted rules pluggable in different
languages providing pattern matching primitives.

We briefly present here the formalism introduced in [14]
for computing pattern complements and which can be directly
applied to transform an ordered constructor term rewriting
system (CTRS) into a plain CTRS. The resulting system
can then be analyzed using well-established techniques and
automatic tools used for plain term rewriting system (TRS).
We also describe how the approach proposed in [15], [16] can
be used to verify that the results obtained when reducing a
term with respect to such a CTRS have a specific shape.

II. GENERIC ENCODINGS

As we have mentioned before, in functional programming
languages the order rules appear in the program is significant
for the evaluation. For instance [14], if we consider a term
representation of motor vehicles characterised by the energy
they use and their type, then we can use the following list of
rules to specify some kind of eco label for each vehicle:

[ paint(car(x, suv)) _ red,
paint(car(electric, x)) _ blue,
paint(car(diesel, y)) _ red,
paint(car(x, y)) _ white,
paint(x) _ red ]

The system indicates that all SUVs independently of their fuel
and all diesel cars independently of their type are bad for
the environment (red), and that all electric cars but the SUVs
(handled by the previous rule) are eco-responsible (blue). The
remaining cars, not in the previous categories, are considered
neutral (white). Finally, any other vehicle (which is not a car)
is labeled red.



The transformation approach we have proposed [14] can be
used as a generic compiler for ordered CTRS which could be
easily integrated in any language providing rewrite rules, or at
least pattern matching primitives. For example, if we consider
trucks and cars with 4 fuel types and 3 styles this approach
transforms the previous list of rules into the following order
independent set of rules:

{ paint(car(electric, sedan)) _ blue,
paint(car(electric,minivan)) _ blue,
paint(car(hybrid, sedan)) _ white,
paint(car(hybrid,minivan)) _ white,
paint(car(gas, sedan)) _ white,
paint(car(gas,minivan)) _ white,
paint(truck(x, y)) _ red,
paint(car(x, suv)) _ red,
paint(car(diesel, x)) _ red }

Moreover, the approach can handle anti-patterns [17], i.e.
patterns that may contain complement symbols. Such patterns
allow the specification of negative conditions in addition to
the positive conditions expressed with classical patterns. Due
to their expressiveness such anti-patterns have been integrated
in tools featuring pattern matching like Tom [18] and Math-
ematica [6].

For example, using anti-patterns we can represent all the
cars that are not SUVs by the pattern car(x, !suv), and
all cars which are neither SUV nor diesel by the pattern
car(!diesel, !suv). The eco-labeling can then be expressed by
the following list of rules with anti-patterns

[ paint(car(electric, !suv)) _ blue,
paint(car(!diesel, !suv))) _ white,
paint(x) _ red ]

and the formalism we have proposed can be used to transform
this latter system into the initial one and eventually into the
unordered one.

We consider the set of terms T (F ,X ) which is the smallest
set containing the set X of variable symbols and such that
f(t1, . . . , tn) is in T (F ,X ) whenever f ∈ F and ti ∈
T (F ,X ) for i ∈ [1, . . . , n]; the set of symbols F consists
of a set D of defined symbols and of a set C of constructors.
The linear terms over T (C,X ) are called constructor patterns
and the patterns in T (C) are called values.

Given a value v and a constructor pattern p, v is an instance
of p if there exists a substitution σ such that v = σ(p) and in
this case we say that p matches v. The instance relation can
be defined inductively:

x ≺≺ v x ∈ X
c(p1, . . . , pn) ≺≺ c(v1, . . . , vn) iff ∧n

i=1 pi ≺≺ vi, c ∈ C

Given a list of patterns P = [p1, . . . , pn], P matches a value v
with pattern pi, denoted P ≺≺i v, iff the following conditions
hold:

pi ≺≺ v
pj ⊀≺ v, ∀j < i

Note that if P ≺≺i v then for all j ̸= i, P ⊀≺j v.

The ground semantics of a constructor pattern p ∈ T (C,X )
is the set of all its ground constructor instances: JpK = {σ(p) |
σ(p) ∈ T (C)}.

Based on these definitions, several problems can be ex-
pressed [19], [20]:

• a list of patterns P is exhaustive iff for all values v there
exists an i such that P ≺≺i v,

• a pattern pi ∈ P is useless iff there does not exist a value
v such that P ≺≺i v,

• the disambiguation of a list of patterns P = [p1, . . . , pn]
consists in finding sets of patterns P1, . . . , Pn such that
for each i ∈ [1, . . . , n], JPiK = JpiK \ ∪i−1

j=1JpjK.
In order to solve these problems we defined extended

patterns

p := X | c(p1, . . . , pn) | p1 + p2 | p1 \ p2 | ⊥

Intuitively, p1 + p2 matches a term if it is matched by one p1
or p2, p1 \ p2 matches a term if it is matched by p1 but not
by p2, ⊥ matches no term.

We also proposed a rewriting system R\ transforming
any extended pattern into ⊥ or into a set of constructor
patterns [14], and showed that this system is convergent and
that it preserves the ground semantics.

To check if a list [p1, . . . , pn] of constructor patterns is
exhaustive it is then enough to check that the result of reducing
x\(p1+· · ·+pn) using R\ leads to ⊥, meaning that there is no
value which can’t be matched by one of p1, . . . , pn. To check
if a pattern pi in the list is useless it is enough to check that
the result of reducing pi \ (p1+ · · ·+ pi−1) using R\ leads to
⊥, meaning that there is no value matched by pi which can’t
be matched by one of p1, . . . , pi−1.

As far as it concerns the disambiguation problem for a set
P = [p1, . . . , pn], each set Pi, for i ∈ [1, . . . , n], is obtained
by computing using R\ the complement pi \(p1+ · · ·+pi−1).
As a consequence, the definition of a function by a list of
equations can be replaced by an equivalent one consisting of
a set of equations, each equation in the list being replaced
by a set of equations corresponding to the set of patterns
obtained by disambiguation of the respective equation. The
formalism handles also anti-patterns and proceeds carefully
with the right-hand side of equations; the interested reader
can refer to [14] for the technical details. The list of rules
presented at the beginning of the section are transformed into
the corresponding set of rules using the formalism.

III. STATIC ANALYSIS

Now, that an ordered list of rules can be transformed into an
equivalent set of rules we can use classical TRS tools in order
to verify properties such as the confluence or the termination of
the corresponding system. There are also multiple approaches,
ranging from model checking ones [21], [22] to tree automata
completion [23], that can then be used to verify that the terms
obtained by reduction with respect to a given CTRS have (or
not) a certain shape.

In the context of program transformation we generally want
to guarantee that specific constructor symbols, or patterns, are



absent from the programs obtained by transformation. For this,
an approach based on the extended patterns presented in the
previous section and relying on a system of annotations of the
function symbols by the patterns to be eliminated has been
introduced in [15].

For instance, let us consider lists of expressions build out
of (wrapped) integers and lists and a transformation which
flattens list expressions:

flatten(nil) _ nil
flatten(cons(int(n), l)) _ cons(int(n),flatten(l))
flatten(cons(lst(l), l′)) _ flatten(concat(l, l′))
concat(cons(e, l), l′) _ cons(e, concat(l, l′))
concat(nil , l) _ l

To statically ensure that the result of the transformation con-
tains no nested lists, we annotate the function symbol flatten
with the corresponding (anti-)pattern p := cons(lst(l1), l2)
and check that the rewriting system is consistent with the
annotation [15]. The method relies on an over-approximation
of the potential results obtained by reduction and thus, it may
lead to some false negatives. For example, the system obtained
by replacing the third rule with

flatten(cons(lst(l), l′)) _ concat(flatten(l),flatten(l′))

produces only flat lists but could not be verified with this
method.

A more elaborate annotation system which allows for a sub-
stantially more precise description of the expected behaviour
of a transformation has been proposed in [16]. Here, each
function is assigned not only a single (anti-)pattern specifying
the post-conditions on the expected outcome but also the
pre-conditions guaranteeing the form of the results. The new
approach relies on an inference method to characterize the sub-
stitutions consistent with the pre-conditions and a verification
method guaranteeing that the application of these substitutions
is consistent with the post-condition.

For this, we extended our pattern formalism with pattern
products: the product p1 × p2 matches any term matched by
both its components. The instance relation and the ground
semantics are extended as expected.

Then, every defined symbol f is associated with a profile
p1∗ · · · ∗pn 7→ p indicating that the normal form of a ground
term of the form f(t1, . . . , tn), when it exists, contains no
value matching p if the terms t1, . . . , tn can be reduced only
to values that don’t contain subterms matching the patterns
p1-, . . . , pn respectively. For simplicity, we consider here only
one profile for each symbol although the general formalism
allows a set of profiles.

For example, we could consider for the symbol concat the
profile p∗p 7→ p, with p := cons(lst(l1), l2), to indicate that
the concatenation of two flat lists is a flat list. We could also
use a second profile q∗q 7→ q, with q := cons(e, l), to indicate
that the concatenation of two empty lists is an empty list.

The notion of pattern-freeness is then introduced. A value
is p-free if and only if p matches no subterm of the value. A
constructor pattern is pattern-free if all its ground instances are

p-free. A general term is p-free if and only if for all subterms
u headed by a defined symbol f of profile p1∗ · · · ∗pn 7→ q,
replacing all instances of u in t by any q-free value, results
in a p-free term. Intuitively, this corresponds to considering
an over-approximation of the set of potential normal forms
of that subterm, and therefore of the whole term. The ground
semantics presented in the previous section is extended for any
term and is consistent with the pattern-freeness (annotations)
of the respective term.

We say that a rewrite rule l _ r is semantics preserving iff
for all substitution σ, we have Jσ(r)K ⊆ Jσ(l)K. A CTRS is
semantics preserving iff all its rewrite rules are.

We can than prove that given a semantics preserving CTRS
R, if a ground term t reduces with respect to R into the term
v, then JvK ⊆ JtK.

Since ground semantics is consistent with pattern-freeness,
the semantics preservation allows the characterization of the
potential normal forms for a semantics preserving CTRS. We
briefly present below sufficient conditions guaranteeing this
latter property and a method for automatically checking these
conditions.

Given a constructor rewrite rule fπ(l1, . . . , ln) _ r with a
profile π = p1∗ · · · ∗pn 7→ p, we say that the rule satisfies the
profile π iff for all substitution σ, σ(li) is pi-free for all i ∈
[1, n] =⇒ σ(r) is p-free.

Profile satisfaction is a necessary and sufficient condi-
tion for semantics preservation: a constructor rewrite rule
fπ(l1, . . . , ln) _ r is semantics preserving iff it satisfies π.

To verify that a rewrite rule is semantics preserving we first
infer the shapes of the terms that could be used to instantiate
the variables in the left-hand side such that the profile of the
head symbol is verified and then, check that when replacing
accordingly the variables in the right-hand side we respect the
post-condition of the profile.

The inference as well as the checking are performed using
an approach very similar to the one presented in the previous
section. To characterize substitutions σ such that σ(li) is pi-
free, we note that σ(li) is pi-free iff Jσ(li)K ⊆ JliK∩Jx−piK =
Jli × x−piK (with x−pi a fresh pi-free variable, i.e. whose in-
stances are pi-free). We introduced in [15] an extended version
of the rewrite system R\ to handle products of patterns, and p-
free variables (using an intermediary algorithm to observe the
shape of all subterms of their instances). This extended system
is used to reduce the product li × x−pi into a sum of aliased
patterns, i.e. patterns where all variables are aliased with a
pattern providing a description of the instances verifying the
considered pattern-free pre-conditions. The variables are then
replaced accordingly in the right-hand side of the rule and a
similar approach is used to reduce the obtained term, in order
to check the pattern-free post-condition.

The analysis method assumes the linearity of the rules of
the CTRS considered. In practice, the aliasing approach to the
inference step of the analysis can handle the non-linearity of
the left-hand side of the rules quite effectively. However, the
over-approximation induced by the notion of pattern-freeness,
does not describe accurately non-linear terms in the right-hand



side of these rules. As a first approximation, the static analysis
can be applied by linearization of these terms. The method
presented in [15] can also use a strictness assumption on the
rewriting strategy to provide a more precise analysis, by taking
into account some instanciation constraints on the variables of
the right-hand side of the rules.

Finally, the current version of the static analysis relies on a
more involved notion of pattern-freeness, defined by partially
instanciating variables under defined symbols, in order to take
into account as many instanciation constraints as possible.
Thanks to this updated formalism, the method can provide a
much more accurate static analysis of these non-linear cases,
while only relying on a confluence assumption.

IV. CONCLUSION

We have briefly presented here the formalisms intro-
duced in [14]–[16]. They allow one to compile anti-patterns
and ordered lists of rules into classical TRS, and to stat-
ically verify properties of the rewrite system and of the
terms obtained when reducing using the system. The ap-
proaches have been implemented and are publicly available at
http://github.com/plermusiaux/pfree_check.

We are focusing now on extending the method to handle
higher-order functions. The extension is quite straightforward
for higher-order functions with a unique annotated profile but
becomes more complicated when function symbols could have
multiple profiles.
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